Журнал MichGan » Лайфхак » Как освоить устный счёт школьникам и взрослым

Как освоить устный счёт школьникам и взрослым

Лайфхакер подобрал простые советы, сервисы и приложения.

Кроме отличных оценок по математике, умение считать в уме даёт массу преимуществ на протяжении всей жизни. Упражняясь в вычислениях без калькулятора, вы:

  • Держите мозг в тонусе. Для эффективной работы интеллект, как и мускулатура, нуждается в постоянных тренировках. Счёт в уме развивает память, логическое мышление и концентрацию, повышает способность к обучению, помогает быстрее ориентироваться в ситуации и принимать правильные решения.
  • Заботитесь о своём психическом здоровье. Исследования показывают Could mental math boost emotional health? , что при устном счёте задействованы участки мозга, ответственные за депрессию и тревожность. Чем активнее работают эти зоны, тем меньше риск неврозов и чёрной тоски.
  • Страхуетесь от проколов в бытовых ситуациях. Способность быстро посчитать сдачу, размер чаевых, количество калорий или проценты по кредиту защищает вас от незапланированных трат, лишнего веса и мошенников.

Освоить приёмы быстрого счёта можно в любом возрасте. Не беда, если сначала вы будете немного «тормозить». Ежедневно практикуйте основные арифметические операции по 10–15 минут и уже через пару месяцев достигнете заметных результатов.

Как научиться складывать в уме

Суммируем однозначные числа

Начните тренировку с элементарного уровня — сложения однозначных чисел с переходом через десяток. Эту технику осваивают в первом классе, но почему-то часто забывают с возрастом.

  • Предположим, вам нужно сложить 7 и 8.
  • Посчитайте, сколько семёрке не хватает до десяти: 10 − 7 = 3.
  • Разложите восьмёрку на сумму трёх и второй части: 8 = 3 + 5.
  • Добавьте вторую часть к десяти: 10 + 5 = 15.

Тот же приём «опоры на десятку» используйте при суммировании однозначных чисел с двузначными, трёхзначными и так далее. Оттачивайте простейшее сложение, пока не научитесь совершать одну операцию за пару секунд.

Суммируем многозначные числа

Основной принцип — разбить слагаемые числа на разряды (тысячи, сотни, десятки, единицы) и суммировать между собой одинаковые, начиная с самых крупных.

Допустим, вы прибавляете 1 574 к 689.

  • 1 574 раскладывается на четыре разряда: 1 000, 500, 70 и 4. 689 — на три: 600, 80 и 9.
  • Теперь суммируем: тысячи с тысячами (1 000 + 0 = 1 000), сотни с сотнями (500 + 600 = 1 100), десятки с десятками (70 + 80 = 150), единицы с единицами (4 + 9 = 13).
  • Группируем числа так, как нам удобно, и складываем то, что получилось: (1 000 + 1 100) + (150 + 13) = 2 100 + 163 = 2 263.

Основная сложность — удержать в голове все промежуточные результаты. Упражняясь в таком счёте, вы заодно тренируете память.

Как научиться вычитать в уме

Вычитаем однозначные числа

Снова возвращаемся в первый класс и оттачиваем навык вычитания однозначного числа с переходом через десяток.

Предположим, вы хотите отнять 8 от 35.

  • Представьте 35 в виде суммы 30 + 5.
  • Из 5 вычесть 8 нельзя, поэтому раскладываем 8 на сумму 5 + 3.
  • Вычтем 5 из 35 и получим 30. Затем отнимем от 30 оставшуюся тройку: 30 − 3 = 27.

Вычитаем многозначные числа

В отличие от сложения, при вычитании многозначных чисел на разряды нужно разбивать только то, которое вы отнимаете.

Например, вас просят отнять 347 от 932.

  • Число 347 состоит из трёх разрядных частей: 300 + 40 + 7.
  • Сначала вычитаем сотни: 932 − 300 = 632.
  • Переходим к десяткам: 632 − 40. Для удобства 40 можно представить в виде суммы 30 + 10. Сперва вычтем 30 и получим 632 − 30 = 602. Теперь отнимем от 602 оставшиеся 10 и получим 592.
  • Осталось разобраться с единицами, используя всё ту же «опору на десятку». Сперва вычитаем из 592 двойку: 592 − 2 = 590. А затем то, что осталось от семёрки: 7 − 2 = 5. Получаем: 590 − 5 = 585.

Как научиться умножать в уме

Лайфхакер уже писал о том, как быстро освоить таблицу умножения.

Добавим, что наибольшие трудности и у детей, и у взрослых вызывает умножение 7 на 8. Есть простое правило, которое поможет вам никогда не ошибаться в этом вопросе. Просто запомните: «пять, шесть, семь, восемь» — 56 = 7 × 8.

А теперь перейдём к более сложным случаям.

Умножаем однозначные числа на многозначные

По сути, здесь всё элементарно. Разбиваем многозначное число на разряды, перемножаем каждый на однозначное число и суммируем результаты.

Разберём на конкретном примере: 759 × 8.

  • Разбиваем 759 на разрядные части: 700, 50 и 9.
  • Умножаем каждый разряд по отдельности: 700 × 8 = 5 600, 50 × 8 = 400, 9 × 8 = 72.
  • Складываем результаты, разбивая их на разряды: 5 600 + 400 + 72 = 5 000 + (600 + 400) + 72 = 5 000 + 1 000 + 72 = 6 000 + 72 = 6 072.

Умножаем двузначные числа

Тут уже рука сама тянется к калькулятору или хотя бы к бумаге и ручке, чтобы воспользоваться старым добрым умножением в столбик. Хотя ничего сверхсложного в этой операции нет. Просто нужно немного потренировать краткосрочную память.

Попробуем умножить 47 на 32, разбив процесс на несколько шагов.

  • 47 × 32 — это то же, что и 47 × (30 + 2) или 47 × 30 + 47 × 2.
  • Сначала умножим 47 на 30. Проще некуда: 47 × 3 = 40 × 3 + 7 × 3 = 120 + 21 = 141. Приписываем справа нолик и получаем: 1 410.
  • Поехали дальше: 47 × 2 = 40 × 2 + 7 × 2 = 80 + 14 = 94.
  • Осталось сложить результаты: 1 410 + 94 = 1 500 + 4 = 1 504.

Этот принцип можно применять и к числам с большим количеством разрядов, но удержать в уме столько операций не каждому под силу.

Упрощаем умножение

Кроме общих правил, есть несколько лайфхаков, облегчающих умножение на определённые однозначные числа.

Умножение на 4

Можно умножить многозначное число на 2, а потом снова на 2.

Пример: 146 × 4 = (146 × 2) × 2 = (200 + 80 + 12) × 2 = 292 × 2 = 400 + 180 + 4 = 584.

Умножение на 5

Умножьте исходное число на 10, а потом разделите на 2.

Пример: 489 × 5 = 4 890 / 2 = 2 445.

Умножение на 9

Умножьте на 10, а затем отнимите от результата исходное число.

Пример: 573 × 9 = 5 730 − 573 = 5 730 − (500 + 70 + 3) = 5 230 − (30 + 40) − 3 = 5 200 − 40 − 3 = 5 160 − 3 = 5 157.

Умножение на 11

Приём сводится к следующему: впереди и сзади подставляем первую и последнюю цифры исходного числа. А между ними последовательно суммируем все цифры.

При умножении на двузначное число всё выглядит крайне просто.

Пример: 36 × 11 = 3(3+6)6 = 396.

Если сумма переходит через десяток, в центре остаётся разряд единиц, а к первой цифре добавляем один.

Пример: 37 × 11 = 3(3+7)7 = 3(10)7 = 407.

Чуть сложнее с умножением на более крупные числа.

Пример: 543 × 11 = 5(5+4)(4+3)3 = 5 973.

Как научиться делить в уме

Это операция, обратная умножению, поэтому и успех во многом зависит от знания всё той же школьной таблицы. Остальное — дело практики.

Делим на однозначное число

Для этого разбиваем исходное многозначное число на удобные части, которые точно будут делиться на наше однозначное.

Попробуем разделить 2 436 на 7.

  • Выделим из 2 436 наибольшую часть, которая нацело разделится на 7. В нашем случае это 2 100. Получаем (2 100 + 336) / 7.
  • Продолжаем в том же духе, только теперь с числом 336. Очевидно, что на 7 разделится 280. А в остатке будет 56.
  • Теперь делим каждую часть на 7: (2 100 + 280 + 56) / 7 = 300 + 40 + 8 = 348.

Делим на двузначное число

Это уже высший пилотаж, но мы всё равно попытаемся.
Предположим, вам надо поделить 1 128 на 24.

  • Прикидываем, сколько раз 24 может поместиться в 1 128. Очевидно, что 1 128 примерно в два раза меньше, чем 24 × 100 (2 400). Поэтому для «пристрелки» возьмём множитель 50: 24 × 50 = 1 200.
  • До 1 200 нашему делимому 1 128 не хватает 72. Сколько раз 24 поместится в 72? Правильно, 3. А значит, 1 128 = 24 × 50 − 24 × 3 = 24 × (50 − 3) = 24 × 47. Стало быть, 1128 / 24 = 47.

Мы взяли не самый трудный пример, но пользуясь методом «пристрелки» и дроблением на удобные части, вы научитесь совершать и более сложные операции.

Что поможет освоить устный счёт

Для упражнений придётся ежедневно придумывать новые и новые примеры, только если вы сами этого хотите. В противном случае воспользуйтесь другими доступными способами.

Настольные игры

Играя в те, где необходимо постоянно вычислять в уме, вы не просто учитесь быстро считать. А совмещаете полезное с приятным времяпрепровождением в кругу семьи или друзей.

Карточные забавы вроде «Уно» и всевозможные варианты математического домино позволяют школьникам играючи освоить простое сложение, вычитание, умножение и деление. Более сложные экономические стратегии а-ля «Монополия» развивают финансовое чутьё и оттачивают сложные навыки счёта.

Что купить

  • «Уно»;
  • «7 на 9»;
  • «7 на 9 multi»;
  • «Трафик Джем»;
  • «Хекмек»;
  • «Математическое домино»;
  • «Умножариум»;
  • «Код фараона»;
  • «Суперфермер»;
  • «Монополия».

Мобильные приложения

С ними вы сможете довести устный счёт до автоматизма. Большинство из них предлагают решить примеры на сложение, вычитание, умножение и деление по программе младших классов. Но вы удивитесь, насколько это непросто. Особенно если задачи нужно щёлкать на время, без ручки и бумаги.

Математика: устный счёт, таблица умножения

Охватывает задания на устный счёт, которые соответствуют 1–6 классам школьной программы, включая и задачи на проценты. Позволяет тренировать скорость и качество счёта, а также настраивать сложность. Например, от простой таблицы умножения можно перейти к умножению и делению двузначных и трёхзначных чисел.

Как освоить устный счёт школьникам и взрослым

Как освоить устный счёт школьникам и взрослым

Загрузить
QR-Code

Математика: устный счет, таблица умножения

Разработчик:

Standy Software

Цена:
Бесплатно

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

Математика в уме

Ещё один простой и понятный тренажёр устного счёта с подробной статистикой и настраиваемой сложностью.

Как освоить устный счёт школьникам и взрослым

Как освоить устный счёт школьникам и взрослым

Загрузить
QR-Code

Математика в уме

Разработчик:

Artem Kazanovich

Цена:
Бесплатно

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

1 001 задача для счёта в уме

В приложении используются примеры из пособия по математике «1 001 задача для умственного счёта», которое ещё в XIX веке составил учёный и педагог Сергей Рачинский.

Как освоить устный счёт школьникам и взрослым

Как освоить устный счёт школьникам и взрослым

Загрузить
QR-Code

1001 задача для счета в уме

Разработчик:

Dwerty

Цена:
Бесплатно

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

Как освоить устный счёт школьникам и взрослым

Как освоить устный счёт школьникам и взрослым

Загрузить
QR-Code

В уме

Разработчик:

Roman Koksharov

Цена:
Бесплатно

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

Математические хитрости

Приложение позволяет легко и ненавязчиво освоить основные математические приёмы, которые облегчают и ускоряют устный счёт. Каждый приём можно отработать в тренировочном режиме. А потом поиграть на скорость вычислений с собой или соперником.

Как освоить устный счёт школьникам и взрослым

Как освоить устный счёт школьникам и взрослым

Загрузить
QR-Code

Математические хитрости

Разработчик:

Antoni Ion

Цена:
Бесплатно

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

Как освоить устный счёт школьникам и взрослым

Как освоить устный счёт школьникам и взрослым

Загрузить
QR-Code

Математические хитрости (100+)

Разработчик:

Antoni Ion

Цена:
Бесплатно

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

Quick Brain

Цель игры — правильно решить как можно больше математических примеров за определённый промежуток времени. Тренирует знание таблицы умножения, сложение и вычитание. А ещё содержит популярный математический пазл «2 048».

Как освоить устный счёт школьникам и взрослым

Как освоить устный счёт школьникам и взрослым

Загрузить
QR-Code

Упражнения для мозга

Разработчик:

Andrei Krupiankovu

Цена:
Бесплатно

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

  • Как освоить устный счёт школьникам и взрослым

Веб-сервисы

Регулярно заниматься интеллектуальной зарядкой с числами можно и на математических онлайн-тренажёрах. Выбирайте необходимый вам тип действия и уровень сложности — и вперёд, к новым интеллектуальным вершинам. Вот лишь несколько вариантов.

  • Математика.Club — тренажёр устного счёта.
  • Школа Аристова — тренажёр устного счёта (охватывает двузначные и трёхзначные числа).
  • «Развивайка» — тренировка устного счёта в пределах ста.
  • 7gy.ru — тренажёр по математике (вычисления в пределах ста).
  • Chisloboy — онлайн-игра на развитие скорости счёта.
  • kid-mama — тренажёры по математике для 0–6 классов.